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Abstract

The present study deals with time series models which are non-structural-mechanical 
in nature. The Box Jenkins Autoregressive integrated moving average (ARIMA) and 
Generalized autoregressive conditional heteroscedastic (GARCH) models are studied 
and applied for modeling and forecasting of spot prices of Gram at Delhi market. 
Augmented Dickey Fuller (ADF) test is used for testing the stationarity of the series. 
ARCH-LM test is used for testing the volatility. It is found that ARIMA model cannot 
capture the volatility present in the data set whereas GARCH model has successfully 
captured the volatility. Root Mean square error (RMSE), Mean absolute error (MAE) 
and Mean absolute prediction error (MAPE) were computed. The GARCH (1,1) was 
found to be a better model in forecasting spot price of Gram. The values for RMSE, 
MAE and MAPE obtained were smaller than those in ARIMA (0,1,1) model. The AIC 
and SIC values from GARCH model were smaller than that from ARIMA model. 
Therefore, it shows that GARCH is a better model than ARIMA for estimating daily 
price of Gram.

Keywords: ARIMA model, Forecasting, GARCH model, Gram Price, Stationarity, 
Unit root test. 

Introduction

Indian agriculture is characterized by risks and uncertainties in the production and high 
volatility in the prices of agricultural commodities. Most often, in spite of good production, 
farmers are making loss due to low prices. In the same way, many times the consumers are 
paying exorbitant prices. Price forecast is one of the critical inputs to the farmers to take the 
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production and marketing decisions and to the policy makers for administering commodity 
proGrams and assessing market impacts of domestic or international events. Monitoring 
commodity price can play a major role on the overall macroeconomic performance of a country. 
Therefore, the commodity price forecast is a key input to macroeconomic policy planning and 
formulation. 

The literature on price forecasting is based on two main groups of linear, single-equation, 
reduced-form econometric models as well as Time Series models. The first group includes 
models which are based on the market efficiency hypothesis, while models belonging to the 
second group consider the effects of commodity market and other variables on commodity 
prices. Studies have compared the different models for forecasting of prices, production and 
export. Autoregressive integrated moving average (ARIMA) models performed better than the 
structural model in predicting the wheat price (Moghaddasiand et al.,2008) and it was found 
appropriate for forecasting oil palm prices (Nochai et al., 2006). The efficiency of ARIMA and 
generalized autoregressive conditional heteroskedasticity (GARCH) models were compared 
for modeling and forecasting of India’s volatile spices export (Paul et al., 2009) and ARIMA 
model was employed for forecasting of inland fish production in India (Paul and Das, 2010). 

This study is undertaken with the hypothesis that ARIMA model for forecasting is suitable for 
non-volatile data, as its inability to capture the volatility component more precisely. Whereas 
GARCH models are more versatile in capturing the persistent volatility in the time series 
data. The prices of pulse (Gram) commodities are more volatile than cereal commodities in 
India as evident from the time series data. Therefore, in the present study, univariate ARIMA 
and GARCH models were fitted to identify better forecast for prices of Gram. To this end, the 
forecast performance was compared on the basis of Mean square prediction error (MAPE), 
mean absolute prediction error (MAE) and Root mean square errors (RMSE). 

Data and Methodology

The study has been illustrated with the time series data on spot price of Gram in Delhi Market 
from 01 January 2007 to 19 April 2012 procured from NCDEX website. The last 60 observations 
were used for validation of the models and hence were not been considered for model building. 
The methodologies were employed to test the time series properties of the data, to identify and 
fit the models and checking the models with time series data. 

Testing Stationarity

The time series properties of Gram prices were assessed by performing unit root test. The 
most widely used tests for testing the unit root or non‑stationary of time series are Dickey and 
Fuller (DF) test (1979) and the Augmented Dickey Fuller (ADF) test. DF test is as follows:
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 ttt eYY ++= −1  ρµ  	 …(1)

Where, =tY  spot price (response or dependent) variable at time t, µ and ρ are parameters and 
et is random term. Here the null hypothesis is that H0: ρ = 1 indicating that the series is non-
stationary.

ttt eYY ++=∆ −1γµ 	 …(2)

Where γ = ρ ‑ 1 & ∆Yt = Yt - Yt-1

The null hypothesis is H0 : γ = 0. The test can be carried out by performing a τ‑test on the 
estimated γ. The τ‑ statistics under the null hypothesis of a unit root does not follow the 
conventional t‑ distribution. The test showed that the distribution under null hypothesis is 
nonstandard and simulated critical values for selected samples size. If the error term et is auto-
correlated, the equation (2) is modified as 

∆ ∆Y Y Yt t i t
i

m
t= + + +∈− −

=
∑µ γ α� �

� 	 …(3)

Where m = number of lagged difference terms required so that the error term ∈t is serially 
independent. The null hypothesis is the same as the DF test, i.e., H0 : γ = 0, implying that Yt is 
nonstationary. The model like the equation (3) is called Augmented Dickey Fuller. This test 
was applied to the spot price series of Gram to test the null hypothesis that the series has a 
unit root or nonstationary. The stationarity of the series was also determined by considering 
the autocorrelation function (ACF). 

Time series models

ARIMA models are capable of representing stationary as well as nonstationary time series 
(Box et al., 2007). GARCH) model is capable to capture volatility in time series data. Thus, both 
models were fitted to the Gram prices and their performances were compared. 

Non-seasonal Box-Jenkins Models for Stationary Series

The general form of a pth order autoregressive model: AR(p) is:

tptpttt YYYY εαααα +++++= −−− ...22110  	 …(4)

Where, =tY  Response (dependent) variable at time t, =pαααα .,,.........,, 210  Coefficients to 
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be estimated and =tε Error term at time t.

The general form of a qth order moving average model: MA(q) is: 

qtqttttY −−− −−−−+= εθεθεθεµ ...2211 	 ...(5)

Where, =µ  constant mean of the process, =qθθθ ..,,........., 21  Coefficients to be estimated, 

=tε error term at time t, =−−− qttt εεε ..,,........., 21 errors.

Now, the general form of ARMA(p,q) is:

qtqtttptpttt YYYY −−−−−− −−−−+++++= εθεθεθεψψψψ ...... 221122110 	 …(6)

ARIMA model

Model for non-seasonal series are denoted by ARIMA ( p, d, q). Here, p indicates the order of 
the autoregressive part, d indicates the order of differencing, and q indicates the order of the 
moving average part. If the original series is stationary, d = 0 and the ARIMA models reduce to 
the ARMA models. A highly useful operator in time-series theory is the lag or backward linear 
operator (B) defined as: BYt = Yt-1.

The difference linear operator (Δ), defined as: tttttt YBBYYYYY )1(1 −=−=−=∆ −

The stationary series Wt obtained as the dth difference ( d∆ ) of Yt 

t
d

t
d

t YBYW )1( −=∆=  	 …(7) 
ARIMA(p,d,q) has the general form:

tqt
d

p BYBB εθµψ )()1)(( +=−
or tqtp BWB εθµψ )()( +=

	 …(8)

Model must be checked for adequacy by considering the properties of the residuals. The 
residuals from ARIMA model must have the normal distribution and should be random. An 
overall check of model adequacy is provided by the Ljung-Box Q statistic. The test statistic Q 
is as follows:
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Where, r2
k(e) = the residual autocorrelation at lag k, n= the number of residuals, m= the number 

of time lags includes in the test. If the p-value associated with the Q statistic is small (p-value 
< α ), the model is considered inadequate.

GARCH Model

Autoregressive conditional heteroskedastic  (ARCH) models are used whenever there is 
reason to believe that, at any point in a series, the terms will have a characteristic size, or 
variance. In particular ARCH models assume the variance of the current error term  to be a 
function of the actual sizes of the previous time periods’ error terms. Often, the variance is 
related to the squares of the previous innovations. ARCH models are generally employed 
in modeling financial time series that exhibit time-varying volatility clustering. If an ARMA 
model is assumed for the error variance, the model is called a generalized autoregressive 
conditional heteroskedasticity (GARCH) model (Bollerslev, 1986).

To measure the extent of price volatility, GARCH (1, 1) model is specified as: 

 	 …(10)

 	 ...(11)

 is the conditional variance. This model is also consistent with the volatility clustering often 
seen in financial returns data.

There are two equivalent representations of the equation (11) that are useful for interpreting 
the model. The first representation: if we recursively substitute for the lagged variance on the 
right hand side of equation (11), then conditional variance can be expressed as a weighted 
average of the lagged squared residuals as:

 	 …(12)
This can be noted that the GARCH (1, 1) variance specification is analogous to the sample 
variance, but it down-weights more distant lagged squared errors.

The second representation: the error in the squared returns is given by  . 
Substituting for the variance in the variance equation and rearranging the terms, the model 
can be written in terms of the errors as:

  	 …(13)



420	 Bhardwaj et al.

Economic Affairs	 Print ISSN: 0424-2513 Online ISSN: 0976-4666

Thus, the squared error follows a hetroscedastic ARMA (1, 1) process. The ARCH parameters 
corresponds to α and GARCH parameters to β. If the sum of ARCH and GARCH coefficients 
close to 1, it indicates that volatility is quite persistent in the price series of Gram.

For testing the ARCH effect, let tε  be the residual series. The squared residual { }2
tå  is then 

used to check for conditional heteroscedasticity, which is also known as the ARCH effect. 
To this end, two tests, briefly discussed below, are available. The first one is to apply the 

usual Ljung-Box statistic Q(m) (Equation 9) to the { }2
tå   series. The null hypothesis is: first m 

lags of autocorrelation functions of the { }2
tå   series are zero. The second test for conditional 

heteroscedasticity is the LM test, which is equivalent to usual F-statistic for testing 0=i0 a:H
, i =1 , 2, … , q in the linear regression 

t
2

qtq
2

1t10
2
t eåa...åaaå ++++= −− , t = q+1,…, T	 (14) 

where te  denotes error term, q is prespecified positive integer, and T is sample size. Let 
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where tê  is least squares residual of (14). Then, under H0: 

( )
( )1−−
−

=
qTSSR

/qSSRSSR
F

1

10  , is asymptotically distributed as chi-squared distribution with q 

degrees of freedom. The decision rule is to reject H0 if ( )á÷F 2
q> , where ( )á÷2

q  is the upper 

100(1− á )th percentile of 2
q÷  or, alternatively, the p-value of F is less than á .

Diagnostic measures for evaluation of forecast performance

The  Bayesian information criterion  (BIC) or  Schwarz information criterion  (SIC) is used 
for model selection among a finite set of models. It is based, in part, on the likelihood function, 
and it is closely related to Akaike information criterion (AIC). In model building, it is possible 
to increase the likelihood by adding parameters, but doing so, it may result in over fitting. The 
BIC resolves this problem by introducing a penalty term for the number of parameters in the 
model.

Let: n = number of observations, k = number of parameters to be estimated, Lmax = the maximized 
value of the log-Likelihood for the estimated model. Then, SIC and AIC are:
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and , HQIC (Hannan-Quinn information criterion) 

The best model was selected with the lowest value of information criterion. 

For measuring the accuracy in fitted models, Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE) and Relative Mean Absolute Prediction Error (RMAPE) were 
computed by using the formulae given below. Validations of forecasts were done in different 
forecast horizons viz. 5, 10, 15, 20, 30, 40, 50 and 60 observations. The MAE, MAPE and RMAPE 
formulae are: 

MAE = ∑ ++ −
h

htht yyh ˆ/1 							        

MAPE = ∑ ++ −
h

htht yyh ˆ/1 						       

RMAPE = { } 100/ˆ/1 ×−∑ +++
h

hththt yyyh

Results and Discussion

Augmented Dickey Fuller test was applied to the Gram spot price series to test the null 
hypothesis that the series has unit root or nonstationary. The results are given in Table 1. The 
result shows that the series has unit root. The alternative hypothesis is true. Thus, data series 
was subjected to first differencing to make the data stationary. The results of differenced series 
indicated that the ‘τ -Statistic’ obtained for price series is not significant, we are bound to reject 
the null hypothesis and the alternative hypothesis of stationary series is true. The Gram price 
series became stationary at one differencing and the data is now ready for further econometric 
analysis.



422	 Bhardwaj et al.

Economic Affairs	 Print ISSN: 0424-2513 Online ISSN: 0976-4666

Table-1. Augmented Dickey Fuller Test for Spot Market Price Delhi Market

Level Data At First Difference

  t-Statistic  Prob.* t-Statistic  Prob.*

ADF Test value -1.787 0.7108 -25.524 <0.001

1% level -3.963   -3.963  

5% level -3.412   -3.412  

10% level -3.128   -3.128  

Estimation of ARIMA model

Estimated parameters for a tentative model were selected on the basis of significance level of 
AR and MA terms given in Table 2. In this particular case only one moving average term was 
found to be statistically significant. The estimates equation obtained in the model as follows:

 ttp BWB εψ )(112.0629.0)( +=

ARCH Lagrange Multiplier (LM) test, a heteroscedastic test developed by Engle (1982), was 
used to determine the presence of ARCH effect in the residuals.

Table-2. Parameter Estimates of ARIMA (0,0,1) model for Spot Price of Gram in Delhi Market

Variable Coefficient Std. Error t-Statistic Prob.

C 0.629 1.039 0.604 0.545

MA(1) 0.112 0.024 4.499 0

Log likelihood -7963.11 Akaike info criterion 10.069

F-statistic 18.739 Schwarz criterion 10.076

Prob(F-statistic) 0.000016 Hannan-Quinn criter 10.072

Inverted MA Roots -0.11 Durbin-Watson stat 2.006

Estimation GARCH Model

In results of the conditional mean equation are presented in Table 3. The parameters were 

found to be as  ( 0.510) and statistically significant MA term (0.136). The conditional variance 



An Empirical Investigation of Arima...	 423

Economic Affairs 	 Print ISSN: 0424-2513 Online ISSN: 0976-4666

equation gave  = 17.464, α1= 0.095 and β1 = 0.895. A high value of β1 implied that, volatility was 
persistent and it took a long time to change. 

Table-3. Parameter Estimates of GARCH (1, 1) model for Spot Price of Gram in Delhi Market

Method: ML - ARCH (Marquardt) - Normal distribution
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)
Variable Coefficient Std. Error z-Statistic Prob. 
C 0.510 0.895 0.570 0.568
MA(1) 0.136 0.027 4.963 <0.001
Variance Equation 

C 17.464 3.640 4.797 <0.001
RESID(-1)^2 0.095 0.008 10.709 <0.001
GARCH(-1) 0.895 0.007 113.807 <0.001

Akaike information criterion 9.779
F-statistic 4.464 Schwarz criterion 9.796

Prob(F-statistic) 0.0013  Hannan-Quinn criterion 9.786

Inverted MA Roots -0.14 Durbin-Watson stat 2.051

The long spikes are the high volatile periods of Gram price series as shown in Figure 1. With 
GARCH (0, 1) model, the volatility clustering was detected. There were lesser spikes compared 
to conditional standard deviation graph as given in Figure 2. In diagnostic checking stage, a 
test for conditional heteroscedasticity in the data with ARCH-LM test on the residuals was also 
performed. The ARCH-LM test for one lag difference of residuals squared was 0.318 under χ2 
(1). But, the null hypothesis was not rejected since the p-value was 0.5721where it had greater 
than 5% of significance level. On the other hand, f-statistic was 0.318 and the test also not 
rejected the null hypothesis at the same condition. The ARCH-LM test on the residuals of this 
model showed that the conditional heteroscedasticity was no longer present in Gram price 
series. First order difference of residuals Graph GARCH is shown in Figure 3. The occurrence 
of significant spikes represent the high volatile period. Standardized residuals Graph for 
GARCH (1, 1) model is given in Figure 4. In Figure 4, a band of lines were joined together 
around mean zero with little spikes throughout the time series. The plot can be observed to 
have an uniform mean and a unit variance. The distribution of the standardized residuals 
was summarized in the histogram and normality test as in Figure 5. The figure shows that 
the residuals were evenly distributed. The mean value was equal to 0.018, and the standard 
deviation is 1.0003 which implies that the standardized residuals were normally distributed. 
The skewness and kurtosis values were 0.370 and 5.479, respectively. The distribution is a bit 
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positively skewed and fat tailed. The Jarque- Bera test revealed that the standardized residual 
was normally distributed.

0

20

40

60

80

100

120

0

20

40

60

80

100

120

250 500 750 1000 1250 1500

Conditional standard deviation

Fig-1. Conditional standard deviation for GARCH (1,1) model

0

2,000

4,000

6,000

8,000

10,000

12,000

0

2,000

4,000

6,000

8,000

10,000

12,000

250 500 750 1000 1250 1500

Conditional variance

 Fig-2. Conditional variance for GARCH (1,1) model

-200

-100

0

100

200

300

-200

-100

0

100

200

300

250 500 750 1000 1250 1500

DST_DELHI Residuals

Fig-3. First order difference of residuals Graph GARCH

-6

-4

-2

0

2

4

6

-6

-4

-2

0

2

4

6

250 500 750 1000 1250 1500

Standardized Residuals

Fig-4. Standardized residuals Graph for GARCH(1,1) model



An Empirical Investigation of Arima...	 425

Economic Affairs 	 Print ISSN: 0424-2513 Online ISSN: 0976-4666

0

40

80

120

160

200

0

40

80

120

160

200

-3.75 -2.50 -1.25 0.00 1.25 2.50 3.75 5.00

Series: Standardized Residuals
Sample 2 1583
Observations 1582

Mean       0.018336
Median  -0.021638
Maximum  5.148411
Minimum -4.745481
Std. Dev.   1.000332
Skewness   0.370617
Kurtosis   5.479182

Jarque-Bera  441.3628
Probability  0.000000

 Fig-5. HistoGram Normality Test of first order difference Gram Price series

Evaluation of forecast performances of ARIMA and GARCH models 

The AIC and SIC values were obtained from estimated equations for both ARIMA and GARCH 
models presented in Table 4. Both the AIC and SIC values from GARCH model were smaller 
than that of ARIMA model. Therefore, it is concluded that GARCH model performed better 
than ARIMA for modeling and forecasting of daily prices of Gram. Forecast error becomes less 
if. actual values and forecast values are closer. Thus, smaller RMSE, MAE and MAPE values 
are preferred. Therefore, MAE, MAPE and RMAPE values were calculated for fitted ARIMA 
and GARCH models at different forecast horizons (Table 5). All forecast errors from GARCH 
model were found to be smaller than that of ARIMA model. Further, daily spot prices (` per 
10 kg) of Gram were forecasted using both the models and the results for last 30 observations 
were compared with actual prices. ARIMA model forecasts were lower than actual prices for 
all the 30 cases and decrease in forecast means prices over actual prices for first 15 and last 
15 days by nearly 11 and 10 percent, respectively. On the other hand, forecasted prices by 
GARCH model were more for 17 and less for 13 cases and deviation were not significant. In 
Nutshell, it is concluded that GARCH model performed better than ARIMA model in case of 
volatile data. In other words, GARCH model is a better model for predicting daily prices of 
Gram.

Table 4 : Information criterion for ARIMA and GARCH models

Model AIC SIC

ARIMA 10.06004 10.07023
GARCH 9.779861 9.796822
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Table 5. Forecast Performance of ARIMA and GARCH models

Forecast Days
MAE MAPE RMSE

ARIMA GARCH ARIMA GARCH ARIMA GARCH
5 14.724 14.862 0.441 0.445 19.275 19.471
10 45.239 41.964 1.282 1.189 73.198 71.996
15 42.671 40.095 1.203 1.132 64.384 63.278
20 46.023 44.548 1.273 1.235 63.746 63.046
30 46.189 46.009 1.286 1.269 61.230 60.768
45 50.770 50.220 1.411 1.387 64.661 64.316
60 48.544 48.290 1.359 1.345 62.004 61.868

Table 6. Gram spot price (` per 10 kg) forecast for last 30 observations  
using ARIMA and GARCH models

Observations Actual 
Prices

ARIMA Forecast GARCH Forecast

Prices Change over 
actual (%) Prices Change over 

actual (%)
1 775.0 712.7 -8.04 803.1 3.63

2 770.0 712.8 -7.43 803.4 4.34

3 775.0 713.0 -8.00 803.6 3.69

4 780.0 713.2 -8.56 803.9 3.06

5 789.5 713.4 -9.64 804.1 1.85

6 800.0 713.6 -10.80 804.3 0.54

7 805.0 713.8 -11.33 804.6 -0.05

8 827.5 713.9 -13.73 804.8 -2.74

9 826.3 714.1 -13.58 805.1 -2.57

10 830.0 714.3 -13.94 805.3 -2.98

11 828.0 714.5 -13.71 805.6 -2.71

12 825.0 714.7 -13.37 805.8 -2.33

13 821.3 714.9 -12.96 806.0 -1.86

14 820.0 715.0 -12.80 806.3 -1.67

15 810.0 715.2 -11.70 806.5 -0.43
16 810.0 715.4 -11.68 806.8 -0.40

Contd.
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17 820.0 715.6 -12.73 807.0 -1.59

18 825.0 715.8 -13.24 807.3 -2.15

19 820.0 716.0 -12.68 807.5 -1.52

20 806.3 716.1 -11.19 807.7 0.17

21 806.0 716.3 -11.13 808.0 0.25

22 806.0 716.5 -11.10 808.2 0.27

23 800.0 716.7 -10.41 808.5 1.06

24 800.0 716.9 -10.39 808.7 1.09

25 790.0 717.1 -9.23 809.0 2.41

26 780.0 717.2 -8.05 809.2 3.74

27 770.0 717.4 -6.83 809.4 5.12

28 762.5 717.6 -5.89 809.7 6.19

29 755.0 717.8 -4.93 809.9 7.27

30 760.0 718.0 -5.53 810.2 6.61

Average (first 15 observations) 805.5 713.9 -11.37 804.8 -0.09

Average (last 15 observations) 794.1 716.7 -9.75 808.5 1.81
Forecast prices less (more) than actual (No.) 30 (0) - 13(17) -

Conclusion

ARIMA model was applied for forecasting Gram prices and model gives reasonable and 
acceptable forecasts. But, it did not perform very well when there exist volatility in the data 
series. GARCH model was also fitted to forecast Gram prices. The GARCH model performs 
better on account of its ability to capture the volatility by the time varying conditional 
variance. The GARCH was found to be a better model than ARIMA in forecasting spot price 
of Gram because the values for RMSE, MAE and MAPE calculated using GARCH model were 
lesser than ARIMA model. AIC and SIC values were also lower in GARCH model than that 
from ARIMA model. The deviations between actual and forecasted Gram prices were little in 
GARCH model. Therefore, it is suggested that GARCH model is a better model than ARIMA 
for forecasting volatile prices.
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